Condensatori e corpi conduttori

Materie:Riassunto
Categoria:Fisica

Voto:

2.5 (2)
Download:499
Data:22.11.2006
Numero di pagine:3
Formato di file:.doc (Microsoft Word)
Download   Anteprima
condensatori-corpi-conduttori_1.zip (Dimensione: 30.44 Kb)
readme.txt     59 Bytes
trucheck.it_condensatori-e-corpi-conduttori.doc     58 Kb


Testo

Condensatore elettrico
E' così chiamato il dispositivo atto a realizzare un adeguato valore concentrato di capacità elettrica. Per capacità elettrica si intende l'attitudine di un circuito ad accumulare carica elettrica. La capacità elettrica è definita dalla legge C = Q / V e si misura in [Farad]. Un condensatore si realizza generalmente mediante due superfici di materiale conduttore con interposto un mezzo dielettrico (isolante). Applicando una differenza di potenziale tra le armature si crea un campo elettrico nel dielettrico e, grazie al lavoro del generatore, un accumulo di carica sulle stesse (carica positiva sull'una e negativa sull'altra), tanto più grande quanto più è grande la capacità del condensatore. Una volta che il condensatore si è caricato, per i circuiti in corrente continua si ha che nel ramo ove è inserito il condensatore non può più passare la corrente elettrica.
La capacità di un condensatore ad armature piane e parallele dipende dalla superficie delle armature S [m2], dalla loro distanza d [m] e dalla costante dielettrica del dielettrico interposto [F/m] secondo la seguente relazione:
Se si hanno diversi condensatori in parallelo, ovvero sottoposti alla stessa differenza di potenziale, la capacità totale è pari alla somma aritmetica delle singole capacità:
Se si hanno diversi condensatori in serie, ovvero tutti aventi la stessa quantità di carica elettrica, la capacità totale è pari all'inverso della somma aritmetica degli inversi delle singole capacità:
Anche per i condensatori sono possibili le trasformazioni triangolo – stella e viceversa così come per le resistenze. Le relazioni da usare sono le seguenti:

Si mota che le espressioni relative alla trasformazione da triangolo a stella per le capacità risulta formalmente simile alla trasformazione da stella a triangolo per le resistenze e viceversa.
Nel caso si abbia un condensatore con il dielettrico costituito da n strati accostati tra di loro e aderenti alle armature, il tutto si considera come la serie di n condensatori ciascuno dei quali corrispondente ad uno strato. Nel caso ad esempio di un condensatore ad armature piane e parallele avente il dielettrico in doppio strato con spessore costante per ciascun strato avremo:

Comportamento elettrostatico dei corpi conduttori
Nei corpi conduttori elettrizzati (cioè che abbiano acquisito carica elettrica, ad esempio sotto forma di elettroni se si tratta di metalli) si verifica quanto segue :
a) in condizione di equilibrio le cariche elettriche libere sono distribuite unicamente sulla superficie esterna del corpo conduttore perché, data la mobilità delle cariche elettriche libere, le interazioni coulombiane che si esercitano tra di esse, essendo le cariche libere tutte dello stesso segno, portano tutte le cariche a raggiungere la superficie limite del corpo conduttore.
b) le cariche elettriche libere in equilibrio sulla superficie del conduttore devono assumere una distribuzione tale che il potenziale di ciascun punto P1 , P2 , P3 , ecc. rispetto ad un riferimento O sia sempre lo stesso, ovvero VP1 = VP2 = VP3 = ecc. Si dice così che la superficie è equipotenziale. Se fosse diversamente avremmo tra due punti, ad esempio P1 e P2 , una differenza di potenziale che provocherebbe uno spostamento degli elettroni liberi verso il punto a potenziale maggiore, contraddicendo così la condizione di equilibrio statico.
c) le cariche elettriche libere in equilibrio sulla superficie dei conduttori producono un campo elettrico E sempre perpendicolare alla superficie stessa del conduttore, se così non fosse si avrebbe, oltre alla componente normale En , una componente tangenziale Et a causa della quale una carica elettrica libera superficiale Q si muoverebbe essendo sotto l'azione di una forza elettrica Ft = Et·Q la qual cosa contraddice la condizione di equilibrio statico.
d) il campo elettrico all'interno di un corpo conduttore in equilibrio statico è sempre nullo in quanto, se fosse diverso da zero, gli elettroni liberi sarebbero in movimento la qual cosa contraddice la condizione di equilibrio statico. Ne risulta in particolare che l'equilibrio elettrico di un conduttore elettrizzato non viene alterato se si immagina di scavare internamente il conduttore stesso fino a ridurlo ad un involucro, anche sottilissimo, costituito da una pellicola metallica corrispondente alla superficie esterna. Nei fenomeni elettrostatici, quindi, il comportamento di un conduttore massiccio non differisce da quello di un conduttore internamente cavo avente eguale forma e dimensioni. Nell'interno di questi conduttori cavi (praticamente sono degli involucri metallici) il campo elettrico rimane sempre nullo , qualunque sia la carica elettrica distribuita sulla superficie esterna, e cioè qualunque sia l'intensità del campo elettrico nello spazio esterno al conduttore cavo. Si intende che, se nell'interno dell'involucro sono racchiusi dei conduttori isolati dalle pareti del l'involucro ed elettrizzati, questi vi producono un campo elettrico il quale rimane del tutto indipendente da tutte le eventuali cariche elettriche situate all'esterno. Si può dire che un involucro metallico completamente chiuso costituisce uno schermo elettrostatico che protegge l'intera regione interna dalle azioni di tutti i campi elettrici esterni (schermo di Faraday).

Esempio